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Influence of Wall-Retarded Transport on Retention and
Plate Height in Field-Flow Fractionation

JOE M. DAVIS and J. CALVIN GIDDINGS

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
SALT LAKE CITY. UTAH 84112

Abstract

The retarded motion of spherical particles in the vicinity of an FFF channel
wall is accounted for in theories for the tlow FFF retention ratio and the
generalized nonequilibrium plate height. These theories do not quantitatively
explain select anomalies reported in the FFF literature.

INTRODUCTION

Field-flow fractionation is a family of methods especially advan-
tageous for the separation and characterization of macromolecular and
colloidal materials. In field-flow fractionation (FFF) each component of
a mixture is localized near one wall or boundary of an unpacked channel
by a force arising from an external field; components forming zones
which are tightly compressed against the wall are carried down the
channel by flow more slowly than are the components of less com-
pressed zones, leading to separation. The mechanism of separation
has been described more fully in other publications (/-3).

The retention of components in FFF is dependent upon the transport
rates of the constituent particles. Each particle is subject to two transport
processes: one is a field-induced displacement which forces each particle
toward the targeted wall (called the accumulation wall), and tae otheris a
diffusive transport process which opposes the buildup of a particle layer
at the wall. The steady-state thickness of the particle layer, and thus its

699

Copyright © 1986 by Marcel Dekker, Inc. 0149-6395/85/2009-0699$3.50/0



13:22 25 January 2011

Downl oaded At:

700 DAVIS AND GIDDINGS

retention, is determined by the balance between these two transport
processes.

It is well known that the displacement of particles through a viscous
medium is inhibited by the presence of other solid objects nearby. A
simple case of this is the reduction of particle transport rate when the
particle is spherical and is in the proximity of a planar wall. The
theoretical details of this wall-retarded transport have been described by
Brenner (4).

Since sample particles in FFF are forced into a thin layer next to the
accumulation wall, each particle will spend a portion of its time in very
close proximity to the wall—that is, within a few particle diameters of the
wall. In these time intervals, transport rates will be considerably reduced.
The question naturally arises as to whether this wall-retarded transport
will lead to any serious perturbations in FFF behavior. The present work
has been done to determine the magnitude of the wall effect and
consequently to provide an answer to the above question.

In the parallel-plate channel configuration used in FFF, illustrated in
Fig. 1, the applied field produces a constant or nearly constant force F on
the individual particles comprising a component, inducing them to
migrate toward the accumulation wall with lateral velocity U:

U=F/f N

where f, the friction coefficient for the particle, is given by the Planck-
Einstein equation as (5)

f=kT/D (2)

where D is the diffusion coefficient of the component particles, k is
Boltzmann’s constant, and T is absolute temperature.

In the absence of flow, a species composed of infinitesimally small
particles forms the following equilibrium concentration profile ¢*(x) near
the accumulation wall in response to F (6):

c*(x) = coe™” (3)

where x is the distance from the accumulation wall, ¢, is the concentra-
tion at x = 0, and /, the characteristic thickness of the profile, is

1 =DAU = k1 /\F| (4)

where the second equality arises by virtue of Egs. (1) and (2).
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Field

Sample
B particle

FiG. 1. (A) Schematic of parallel-plate FFF channel. (B) Edge view of channel illustrating
coordinate systems.

The flow profile in the FFF channel is closely approximated by the
profile of velocity v between infinitely parallel plates:

v =6{v> <L - (i>2) (3)
w w

where {v) is the average linear velocity of the fluid and w is the width of
the channel.

With the help of Egs. (3), (4), and (5), one can derive the following
expression for the retention ratio R:

R = v/<$v> = 6A[coth (20)~" — 2] (6)
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providing ! is constant across the channel. Here v is the average
downstream velocity of the component particles and A = //w. Using Eq.
(4), we can also write A as A = kTAFbw = kTAW,, where W is the work done
by the constant force F in transporting a particle across the channel of
width w.

The dispersion of a zone is largely made up of nonequilibrium effects,
described by nonequilibrium plate height H (7):

xwXv)
D

H= N

where x = x(A) is a dimensionless nonequilibrium coefficient which
approaches 24A’ as A approaches zero.

It is usually assumed in the derivation of Egs. (3), (6), and (7) that
transport parameters D and U are constant. We must reconcile this
assumption with the knowledge that friction coefficient f increases as a
particle approaches within a few equivalent radii of a solid boundary.
Thus D and U, which vary inversely with f as shown by Egs. (1) and (2),
are not constant over the full width of the channel but decrease very near
the walls.

In this paper we account for this wall-retarded transport in the
retention and nonequilibrium-plate-height theories of FFF. We wish to
determine if reduced transport rates near the walls significantly perturb
the equations given above. Since these equations are used to estimate
physicochemical properties of resolved species, it is important to know if
significant sources of error exist (6, 8-10).

Since for most FFF subtechniques, both D and U are inversely
proportional to f, the ratio / = DM s independent of f and the retention
ratio R is thus unaffected by wall-retarded transport. However, for the
subtechnique flow FFF, the retention ratio differs from the R expressed
by Eq. (6) because Eq. (1) does not describe lateral velocity for this
method. A corrected R is obtained later in this paper.

The nonequilibrium plate height is a function of diffusion coefficient
D, which varies inversely with f. Thus a departure from Eq. (7) is expected
due to wall-retarded diffusion; its magnitude is also determined in a later
section.

WALL-RETARDED MASS TRANSPORT

The friction coefficient £, Eq. (2), is commonly expressed by the Stokes
equation (5)
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fs = 6mma (&)

where n is the viscosity of the fluid and « is the radius of a spherical
particle or the effective (Stokes) radius of a nonspherical particle.
Equation (8) adequately describes f in bulk fluids but does not account
for wall-retarded transport. To describe the latter, we write (4)

f=1Tfs )

where I' is a dimensionless term which depends on the shapes of the
particle and the wall and the distance between them. The function T,
which corrects for the frictional drag on a rigid sphere in the vicinity of
an infinite plane, is (4)

4 | - nin + 1)
T = = sinh
35 Y,;(Zn—l)(2n+3) X

|:2 sinh (2n + 1)y) + (2n + 1) sinh 2y

1 = cosh ' = 10
4 sinh®((n + %)y) — (2n + 1)* sinh>y ] Y a o

where x is the distance of the sphere’s center from the plane. A plot of T
versus x/a is shown in Fig. 2; a cursory examination shows that I’ = 1
except within a few radii of the plane. As the sphere approaches the plane
(i.e., as x/a approaches 1), I approaches infinity and mass-transport rates
approach zero. Equation (10) has been verified experimentally (/1).
Also shown in Fig. 2 is a plot of the following approximation to T

'~1+ = , x>a (1)

The second term of the middle expression of Eq. (11) can be shown to
equal the first-order expansion of Eq. (10) around x/a = 1 (12). Figure 2
shows that this simple function is a good approximation to I.

We shall use I' to account for the influence of wall-retarded transport
on particle behavior in FFF. Such an analysis is rigorous only for
spherical particles, but with this case we can gauge the general
importance of the wall correction.
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FiG. 2. Plot of I', Eq. (10). versus x/a. Insert: Plot of I and approximation to T, Eq. (11), versus
x/a.
Equation (11) can be written as
a
I'=1+ — (12)
X

where x" =x —a is the distance relative to the plane at x =a, as
illustrated in Fig. 1(B).

For well-retained components, for which R < 1, we need to correct for
reduced transport rates only at the accumulation wall. Near this wall, Eq.
(1) must be modified by Eq. (9) to yield

F F
S

(13)
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Similarly, Eq. (2) modified by Eq. (9) gives
D=—=—= 3 (14)

where Dy is the Stokes diffusion coefficient applicable to the bulk fluid.

MODIFIED RETENTION THEORY FOR FLOW FFF

Flow field-flow fractionation is a subtechnique of the FFF family in
which components are carried toward the accumulation wall by a lateral
flow of fluid through two semipermeable membranes which now
constitute the channel walls; the lateral flow displacement replaces the
external field (10, 13-15). For this method, the lateral velocity U of all
particles in the channel is everywhere the same, equaling the transverse
flow velocity. The particle diffusion is nevertheless assumed to be
retarded in the usual way near the wall of accumulation. Since the ratio
D/U of Eq. (4) now depends on f and thus on channel position, the
retention ratio R, Eq. (6), is no longer rigorously correct for this
subtechnique.

We propose here a modified theory of retention for flow FFF in which
the magnitude of the lateral velocity is the constant l° and in which the
component’s diffusion coefficient is given by Eq. (14). Although the
function I strictly corrects for a particle’s decreased diffusivity near a
solid plane and not near a semipermeable membrane, this approxima-
tion is expected to be fairly good as long as the pore diameter of the
membrane (typically about 0.02 um) is much smaller than particle
diameter, which is usually the case.

The retention ratio R for a component subject to any form of FFF,
including flow FFF, is given by

R = {e*v)

RCIO) (1)

where, as before, c* is the equilibrium concentration and v and {v) are the
profile and average linear velocity of the fluid. The angled brackets
indicate that the enclosed functions are averaged over the cross section of
the channel. The profile of ¢* is obtained by equating the net lateral mass
flux of the component to zero (16):
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*
veex = p 9 = g (16)
dx
Using Eq. (14) for D, we get
de*  U°T T
= ———dx' = — —dx’ 17
e D, ¥ ; x (17)

where [, = DS/1U°| = ~Dy/U® in analogy with Eq. (4). Using Eq. (12) for T’
and integrating over the arbitrary x range from & to x’, we find

8 a/[f —(X'—S)/If
c*=col| —; e (18)

X

where ¢, is the value of ¢* at x’ = 8. Equation (18) reduces to Eq. (3) in the
limit a = & = 0, thus satisfying this consistency test.
In terms of coordinate x’, the profile of velocity v, Eq. (5), is

o) 2} (2]
w w w w

+ 6(y)(0 — a?) (19)

where a = a/w. Combining Egs. (15), (18), and (19), we find

R,=6(c — o) +

_ (I=aflp —x'/ly @-aflp ~x'if
6f 50 L= 20 x' e - —1—2 x' e dx’
w w

J'H»U—ZO)x’—a/lfe-X'/lfdx’ (20)

where w(l — 2a) is the upper value of the x’-coordinate beyond which the
spheres’ centers cannot migrate (see Fig. 1B). The first term in Eq. (20) is
the steric component of retention, originating from the transport of
spheres which (almost) touch the wall; these are assumed to be carried at
the velocity of the streamline coinciding with the spheres’ centers. The
second term, the ratio of integrals, describes the Brownian component of
retention in the channel’s accessible core, which is the fraction of the
channel (shown between the dashed lines in Fig. 1B) through which the
spheres’ centers can move (/7). This ratio of integrals is zero unless
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0 <a <I; thus this simple theory for flow FFF predicts that only the
steric component of retention exists if @ > /;. For normal FFF, a </.
Introducing the variables

&= x'/l; (1)
and
A
* f 2
)\Tf 1 - 2a (2 )

where A, = [;/w, we can write Eq. (20) as

JE = 20) & e S = MG emene=$ngg
J‘(l)/x]c/—a/lfe—gf dCf

R, = 6(a — a’) + 6);

= R(0) + R}"( A, 7) (23)

i

where R, and R} are, respectively, the steric and accessible-core contribu-
tions to retention ratio R;. A similar breakdown of the retention ratio into
a steric and a nonsteric term was shown earlier (7).

Noting that the integral

de™™m" 'dm = P(n,d) 24)

is the incomplete gamma function P(n.d), RFfmay be written as

((1 - 20.)1’(2 —?%) - 7;,P(3 —-‘Q%))
Ay ARy

i
RF= 6}, (25)
pl1-¢ L
Iy N
If we use the identity
Pndy=—d" e+ (n—-1)Pn - 14d) (26)

Eq. (25) can be rewritten as
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,
Re=6r | 1-2 )| (1 -20) -2 [2-2
monfi-5) 025

1 (l-a/lf) ~1/A)‘
20— o)l — e
- )

+ 6\, 0<a<l; (27)

As a approaches zero, Rf approaches R, Eq.(6), thus showing consistency
in this limiting case.

The evaluation of the incomplete gamma function P(1 — a/l;, 1/A}) in
Eq. (27) requires either numerical methods or a power-series expansion
and subsequent term-by-term integration. For the case in which a
component is well retained (i.e., when A, & A< 1) the second term on the
right-hand side of Eq. (27) is negligible and RFis approximately

~ 6xf<1 —5>[(1 - 2a) - x,(z —a>], 0<a<l, (28)
Iy " ly '

The approximate retention ratio R, for flow FFF which accounts for wall-
retarded transport requires that R, be added to this R}, as shown by Eq.
(23):

R, ~ 6(a — a?) + 67&,(1 - g>[(1 - 20) - x,(z - 3)] ,
' ‘ ly ' I

A more exact expression for R, is obtained by adding R, to the RF of Eq.
@n.

MODIFIED THEORY FOR NONEQUILIBRIUM PLATE HEIGHT

General equations from which the nonequilibrium plate height can be
evaluated for species composed of particles of arbitrary shape were
derived by Gajdos and Brenner (/8). In their work the authors noted that
a component’s diffusion coefficient decreases near the channel wall but
did not account for this decrease in their theory. We develop here an
equation for the nonequilibrium plate height H of a monodisperse



13:22 25 January 2011

Downl oaded At:

FIELD-FLOW FRACTIONATION 709

sample composed of spherical particles using the function I, the
equation of continuity for mass transport, and the nonequilibrium theory
of FFF, as developed by Giddings (7). The equation of continuity for
mass transport in the channel is (7)

dc/or=—-V-J, — V-], 30)

@____“6 Uc-—Dac _ 9 vc-—ngE (31)
ot ox' ox’ 0z oz

where ¢ is time, ¢ = ¢(x’,z,t) is the component’s concentration profile, J; is
the lateral mass flux, J, is the axial mass flux along coordinate z, and D,
is the diffusion coefficient of the species, which is assumed to be constant,
relative to flow coordinate z.

Nonequilibrium theory is used to calculate H from Eq. (31) as follows.
Under quasiequilibrium conditions, profile ¢ does not vary with time
along the x'-coordinate, and d¢/0r can be approximated as (7)

or

oc o%c* dc*
x -v

a0 2D, 32

(32)

where v is the average zone velocity. Using Eq. (32) and the expansion
c=c* + ¢) (33)

where g(x'.z) is the equilibrium-departure term and measures the
fractional departure of ¢ from ¢* due to flow (7), an ordinary differential
equation in ¢ is developed from Eq. (31). It can be further shown that ¢ is
related to H = 2 & /v by the effective Fickian diffusion coefficient &
measuring flow dispersion (7)

o lvetre)

- dlnc*
* _
Ce*) 0z

QO
Il

(34)

where the angular parentheses indicate cross-sectional averages. (All
solutions for € are proportional to @ In ¢*/dz,s0 & is independent of the
indicated concentration gradient (7).)
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We now derive the differential equation in ¢ accounting for wall-
retarded transport in the channel. Noting that the field-induced velocity
U can be written, via Eqgs. (3) and (4), as U= =D/l for most FFF
subtechniques except flow (which is not considered here), the first term
on the right-hand side of Eqg. (31) becomes

vy =dDfe o)y 9 (e, O 35)
dx'\I ox’' ox'\I ox'

We may write the partial differential 6D/dx’ as dD/dx' since T and thus D
are functions only of x'. Equations (31), (32), (33), and (35) can be
combined to give

D

z

d%c* oc* dD /c* c*e  Oc*  d(c*e)
-y ——= RN L.
0z? 0z dx’\ I ! ox’ ox’

* * * *
+D 6<c_+ca+ac +6(cs)>

ox'\ 1 { ox' ox'
Pe*  dc
+ Dz ? -V az (36)

where only the indicated terms are kept from the expansion because the
zone’s axial dimensions are much greater than its lateral dimensions; in
other words, because d(c*e)/0z < d(c*e)/ox’ (7). We may consequently
write 0g/0x’ as the ordinary derivative, de/dx’.

Equation (36) may be greatly simplified by using the expression

oc* dc* ox c*
F iy P M (37)

where oc*/0x’ is calculated using Eq. (3) and the identity x = x' + a.
The substitution of Eq. (37) into Eq. (36), the cancellation of common
terms, and regrouping reduces Eq. (36) to

dc* _dD de de Oc* d’e
9z dv a S VP o TP e

v —v) c* (38)
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The derivative of D is, using Eq. (14),

dD _ dT/dx'

o ST (39)

Substitution of Egs. (37) and (39) simplifies Eq. (38) to the desired
differential equation in the equilibrium-departure term &:

—v) = - 40
(v=v) +o) o (40)

dlnc* T d¢ (dInT 1) de
0z Dy dx" dx’ !
If I is equated to 1, Eq. (40) reduces to Eq. (20) in Ref. 7, which is the
differential equation in € for a zone having a constant lateral diffusion
coefficient.
Equation (40) may be written in dimensionless form using the reduced
variables (7)

C=x/ (41)
_ eDg
¢ = 2 Jdlnc* (42)
v 0z
and
=v/v (43)
We then get
¢ (dinT do
- |——+1]|-—==T(u-1 44
d§l<dc )dg (n=1) (44)

where ['(x'/a) is transformed to I'({).

Because the spheres’ centers cannot migrate beyond the accessible-core
boundaries, it is convenient to calculate first from this differential
equation a nonequilibrium plate height H* for the accessible-core
channel (using the approach described above) and then to calculate the
measurable nonequilibrium plate height H from H*. Using a formalism
previously developed for this purpose (/7), the constant 6{v)(a — o) is
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subtracted from v, Eq. (19), so that the profile equals zero at the
accessible-core boundaries. Parameter H* can then be shown to equal

{7

WHEVE x*(1 = 2a)'wiv)

H* = D: D. (45)
where
v* = R*(v*) (46)
¥ r N2
v = 6(v) [(1 -2a) - (x—) ] (47)
w w
X* = AR | (48)
* — A’ N
¥ = 1-2a (49)
and

v = =2c*ow/Ke*) = =2{c*(¢ — g — IN/e*> (50)

where g, is a constant. The function v*, Eq. (47), is the adjusted velocity
profile which equals zerc at the accessible-core boundaries. The acces-
sible-core parameters v*, {v*), and R* based on this adjusted profile are
the average zone velocity, the average linear velocity of the fluid, and the
retention ratio, respectively. Parameter R* is defined by Eq. (6) using A¥,
Eq. (49), instead of A.

The function ¢ is obtained by solving Eq. (44) using two constraints to
determine a unique solution. The first constraint is that the average
departure due to flow of ¢ from c¢* is zero (7):

(c*e) =0 (51
(It is by virtue of this condition that the second identity in Eq. 50 is

derived.) The other constraint is that the spheres’ centers cannot cross the
accessible-core boundaries. Following the method of Giddings, we find

?)

D=2 =0 (52)
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The function exp (—§)/T is an integrating factor for Eq. (44); hence

d (e do _C
L D) 2 -1 53
d§< T dC) e -(Ll ) (53)

Integrating both sides, we obtain

- d )
I = _eif_ Eqé = [§e~"(w(') — Ddr' (54)

where ' is a dummy variable of integration and 7(0) = 0 in light of Eq.
(52). Integrating I, we find

o —g = [$T(z")e [Fe™ (u(r") — Ddt'dz’ (55)

where z’ is another dummy variable and g, = ¢(0).
Letting the constant g, in Eq. (50) equal the constant g; in Eq. (55), we
can combine these two equations with Eq. (3) to obtain

e () = 1) [§TEe” e~ (u(t') — 1)dr'dz'dy

y* = =2
i evsag

(56)

The integral in the numerator of Eq. (56) can be simplified via
integration by parts, as shown in Ref. /9. Coefficient y* thus reduces
to

o = 2 LTSS ) = Ddz'ydg
[ e7ag

(57)

The reduced velocity u = v*/v* in the accessible core can be shown,
using Eqs. (46) and (47), to equal (I9)

6
= — | A*C = (A*0)? 58
uR*(C(C)) (58)

Combining Eqgs. (57) and (58) and partially evaluating the imegral, we
find
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W* 2 1ar re§|:6)\*zcze_§ + 6(2%*2 - )\*)ce—é

R*(1 —exp (=A%) 7°

*,-¢ * 2
12A%e N 12: ] (59)

- exp(M™) 1 —exp(A*7")

The complexity of the function I, Eq. (10), precludes further analytical
evaluation of Eq. (59). We can derive an analytical approximation to w*
using the approximation to I, Eq. (12), which in terms of { is

a
~ 1+ —
T + c (60)

Combining Egs. (59) and (60), we obtain an approximation to y* which
can be expressed as

w*(k*, ?) ~yr(A*) + w(xj) (61)

where y*is the nonequilibrium coefficient for an ideal (hypothetical)
zone having a constant lateral diffusion coefficient and w¥*is a correction
for the restricted motion of zone members near the channel wall. The
relationship for y* given by Eq. (25) of Ref. 19, is a complex function of A*
which approaches the limit four as A* approaches zero. Coefficient y;can
be shown to equal

v= 2/l 648A* — 288A*7 + 36A%
R*(1 —exp (—A*"Y))

T20*

— (3 *3+ *4 _x—l
(3604 648A0**) exp (— A Hl—exp(x*-‘) x

288
(1= exp (AF )’

© *—1\2n
y () ] (62)

=1 (2n)(2n)!

(6A*2(exp (=A*"1) — 1) + 60* — 1) +
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Of the six terms in the brackets of Eq. (62), only the first three
contribute significantly to the value of yw*when R* < 1. As A* approaches
zero, Eq. (62) approaches 2a/l; thus the limit of Eq. (61) for this case is

y*=4+22 (63)
lim A*—>0

As A* and zone thickness [ approach zero, Eq. (63) becomes unbounded.
Parameter H* is nevertheless bounded (and approaches zero) because it
is proportional to the product y*/, as shown by Eq. (45).

The function which relates H* to H is (17)

I R*(1 — 20)?
H=H 6(a — a?) + R*(1 — 2a)’ (64)

Combining Egs. (45) and (64), we find that

= Y*R*(1 — 2a)'w?(v)
" Dg[6(a — a?) + R¥(1 - 2a)?]

(65)

where x*, Eq. (48), is defined by Eqgs. (6), (49), and (59) or (61)-(63).

RESULTS AND DISCUSSION

Figure 3 is a plot of the Brownian (normal or nonsteric) component R}
of retention ratio R, for flow FFF versus A, for selected values of a/l;. The
solid curves were calculated from the rigorous relationship, Eq. (27), with
numerical integration of the integral P(1 — a/I;,1/A}). The broken curves
below the solid ones were calculated from approximate Eq. (28), whereas
the broken lines above the solid curves were evaluated from the terms in
this expression which are linear in A,. Some approximations are not
shown because they essentially superimpose on the solid curves. The
agreement between Eqs. (27) and (28) is generally good, especially when
the quadratic term in A, is retained in Eq. (28).

The importance of this modified retention theory for flow FFF is
difficult to evaluate. A literature survey reveals that the experimental
retention ratios of proteins, polystyrene latices, and viruses in flow FFF
systems are in close agreement with the predictions of R, Eq. (6), when
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lateral velocity lU°] is relatively small (10, 13, 15). As observed earlier,
however, the retention ratios predicted by Eqgs. (6) and (23) are very
similar when a/[, < 1 and a < 1.

Using experimental results and physicochemical data characterizing
species composed of spherical (or almost spherical) particles, we can
estimate a/l, ratios and determine if a significant departure from Eg. (6) is
expected. This ratio can be written, using Eqgs. (2) and (8), as (/0)

a_ avel _ a|U°|fS _ 6mmawV, (66)
Dy kT KTV,

=
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where ¥ is the column void volume and V, is the volumetric crossflow,
the volume of fluid passing through the semipermeable membranes
forming the channel walls per unit time. For all but one case, the
calculated a/l; ratios are <0.12 (and usually < 0.12). The expected upper
percentage error between R and R, is thus roughly 10%, which is also the
average percentage error between Eq. (6) and the experimental retention
ratios (10). Random sources of error could, however, account for this
small relative variation. The exception, a polystyrene latex for which a/
[=019(@=24X10" m w=38X10"m, V,=185X10"° m’, V. =
3.6 X 107 m/s, n = 0.001 kg/m-s, A, =333 X 107, @ = 6.33 X 107, and
T = 300 K), is associated with an experimental retention ratio equal to
0.020 (10), which is also the retention ratio predicted by both Eqgs. (6) and
(29). (Although R} is less than R, Eq. 6, the flow FFF retention ratio R; is
calculated by adding R, to Rf; for this case, R = R;) Thus none of these
results unambiguously establishes the role played by wall-retarded
diffusion in the retention mechanism of flow FFF.

Secondly, it has been observed experimentally that some species, e.g.,
viruses, are infinitely retained in flow FFF systems when lateral velocity
lU°l exceeds a critical value (13), but complete or partial elution is often
observed when IU° is reduced. The transition is rather sudden. Two
possible explanations of this phenomenon are the adsorption of particles
on the membrane forming the channel wall and the trapping of particles
in microscopic basins of the membrane which are well removed from the
axial flowstreams (/3). Either mechanism could conceivably result in
near-infinite retention if particles comprising a zone are very near the
membrane, which will be the case when the steric component R, of
retention is the dominant term of retention ratio R,. Equation (23)
predicts that only R, is finite if a/l;> 1; it is therefore instructive to
determine if the critical value of [U°l is obtained when a/l; = 1.

The corresponding critical volumetric crosstlow V', is calculated from
Eq. (66) by equating a/l, to unity:

) KTV,
= 6nmatw

(67)

The question mark indicates that Eq. (67) is the expected relationship if
the above condition holds. The QB virus and similar bacteriophages were
reported to adsorb to a cellulose-acetate membrane at the crossflow
V., ~ 1.33 X 10°® m*/s (13). Using this value for ¥, and the values cited
above for V;, w,n, and T, the Stokes radius of the Qp virus calculated from
Eq. (67) is 0.284 um, which is 20.6 times larger than the radius calculated
from Egs. (2) and (8) and the reported Stokes diffusion coefficient of the
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QB virus, 1.61 X 107" m%/s (13). Since the a/l, ratio depends on the square
of particle radius (see Eq. 66), the actual a/l; ratio is not unity but
(20.6)7% = 2.36 X 107%, suggesting that little correlation exists between the
limit a/l; = 1 and the phenomenon of infinite retention. More likely, an
interaction of species with the membrane must be considered to
understand this anomaly.

Finally, the apparent decrease in the diffusion coefficient of the Qp
virus with increasing crossflow (13) cannot be accounted for by the
modified retention theory. For species composed of infinitesimally small
particles, A is (10)

DV,
A= —— 68
V' (68)
205 T T ‘ ' ‘
*
- A =0
200 <« A*=00
/- A¥=002
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<« A" =005
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Fi1G. 4. Plot of y* versus a/! for typical values of A*.
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and thus the product AV, is constant and proportional to diffusion
coefficient Ds. One could propose the following argument to explain the
reported decrease in Ds. Equation (23) predicts that the expected
retention ratio for flow FFF is smaller than predicted by Eq. (6)
(assuming R}>R,). Using Eq. (6), erroneously small X’s are thus
calculated from experimental retention ratios, the relative errors in which
increase with increasing crossflow. Thus the product V A can remain
constant only if diffusion coefficient Dy decreases.

Quantitative calculations do not, however, support this argument. In
the channel having the cellulose-acetate membrane, the diffusion
coefficient of the QB virus was reported to decrease when V', >2 X 107°
m®/s (13). Based on this value and the Stokes radius of the virus, the ratio
a/l;= 3.5 X 107 is calculated using Eq. (66). Wall-retarded diffusion thus
does not account for this phenomenon.

Figure 4 is a plot of the nonequilibrium-plate-height coefficient y*
versus a/l for several values of A*, The solid curves were obtained from
numerical integration of Eq. (59); the broken curves were evaluated from
Egs. (61) and (62). The limiting curve for y* = 0 was calculated from Eq.
(63). The agreement between the numerical and analytical results is
good.

Figure 5 is a plot of Z, the ratio of the nonequilibrium plate height
corrected for steric effects (Eq. 64) to the ideal nonequilibrium plate
height (Eq. 7), versus a/l for typical values of A. The solid curves (unlike
the broken ones) are also corrected for wall-retarded transport. Clearly,
the predicted values of H are greater if one accounts for this effect.

It is premature to evaluate the full significance of this work because, as
noted elsewhere (/7), the importance of size effects on dispersion by f ow
has received little experimental study. In general, the agreement betw:en
experimental and theoretical nonequilibrium plate heights is not as good
as the agreement between experimental and theoretical retention ratios,
but this trend is also found in chromatography (20).

A brief summary of the discrepancies between experimental and
theoretical H’s for various FFF subtechniques is helpful in evaluating the
importance of wall-retarded transport on nonequilibrium-plate-height
theory. In studies of moderately retained (R < 0.27) polystyrene polymers
via thermal FFF, excellent agreement between theoretical and experi-
mental y coefficients was obtained for one series of experiments in two
channels (21), whereas the percentage error between these coefficients
varied from =749 to 34.3% for another series of experiments in five
channels (22). For sedimentation FFF, it was found that plots of H versus
{v) derived from polystyrene latices (9) and the T2 virus (23) yielded
slopes (which, as shown by Eqgs. 7, 48, and 65. are proportional to y and
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o/l

FIG. 5. Plot of dimensionless plate-height ratio, E, versus a// for typical values of A.
a<0.1

y*) differing on the average from theory by —42%, most likely due to
particle interactions. However, similar studies using polystyrene latices
and a different sedimentation system yielded slopes which inexplicably
differed from theory by 40-50% (24). In a prototypical electrical FFF
system with channel walls formed from flexible membranes, the experi-
mental nonequilibrium plate height of hemoglobin was approximately
twice the theoretical prediction (25), whereas very good agreement
between experiment and theory was obtained with the enzyme lysozyme
(but not with hemoglobin) in an electrical system with rigid walls (26).
The discrepancies between experiment and theory summarized above
probably have more than one origin, including system-to-system varia-
tion. None of these aberrations, however, is likely attributable to wall-
retarded transport. A literature survey reveals that the largest a/l ratio
associated with nonequilibrium-plate-height data is 0.38, as determined
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from the retention of 0.945-pm-diameter polystyrene latex via sedimenta-
tion FFF (w = 1.27 X 107 m and the retention ratio is 0.08) (24). From
Eqgs. (61), (62), and (65), one anticipates only an 18% variation between the
wall-corrected and the ideal nonequilibrium plate heights; furthermore,
the theoretical slopes C of the H-versus-{v) plots for the wall-corrected
(C = 0.61 s) and the ideal (C = 0.72 s) nonequilibrium plate heights are
both considerably smaller than the experimental slope (C = 1.78 s). This
large discrepancy is unlikely due to wall-retarded diffusion.

Most of the experimental studies of plate height summarized above
were conducted in the Brownian regime of FFF, for which /> a.
Equation (62) predicts that the corrections to y* and plate height H are
most important in the steric regime of FFF, for which [/ <a. The
experimental data for this regime are unfortunately limited and con-
flicting (27-29). In accordance with nonequilibrium theory, H was found
to increase with increasing linear velocity {v) for species composed of
silica (27) and polystyrene latex (28) but was found to decrease with
increasing {v) for a sample composed of red blood cells (29).

Furthermore, since for a given field strength radius a almost always is
greater for smaller/ values (30), the a ratios of species readily fractionated
via steric FFF are frequently large (i.e., @ > 0.01). Under these conditions
the viscous fluid exerts a nonnegligible lift force on the particles which
depends on both g and {v) and is opposite to lateral force F, inducing
migration away from the wall (28, 29, 31, 32). Consequently, Eq. (3), which
is independent of @ and <{v), is often not correct for the steric mode of
FFF, lessening the rigor of coefficient y*, Eq. (59). Until further
experimental and theoretical characterization of nonequilibrium plate
heights in the steric mode of FFF is undertaken, the utility of the wall-
corrected equations derived here remains open.

CONCLUSION

The moditied retention theory for flow FFF does not explain quantita-
tively the infinite retention of a component above a critical crossflow or
the apparent decrease in its diffusivity with increasing crossflow.
However, the importance of correcting the retention ratio for wall-
retarded transport cannot be unambiguously evaluated from published
data since usually a/l; < 0.1 and the relative errors among R, R;, and the
experimental retention ratios are all small.

The modified theory for nonequilibrium plate height does not
realistically account for several anomalies when components are subject
to normal (Brownian) FFF. The influence of wall-retarded diffusion on
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the nonequilibrium plate heights of components subject to steric FFF
cannot be presently evaluated due to insufticient experimental data and

an incomplete characterization of the component’s concentration pro-
file.

SYMBOLS

a radius of spherical particle or Stokes radius of nonspherical
particle

c concentration

c* equilibrium concentration

o concentration at accumulation wall (x = 0) or the plane
x'=8

D diffusion coefficient

o effective diffusion coefficient describing flow dispersion

Dy Stokes diffusion coefficient

D, diffusion coefficient relative to coordinate z

F lateral force on particle subject to FFF

f friction coefficient of particle

fs Stokes friction coefficient

H nonequilibrium plate height

H* nonequilibrium plate height in accessible core

J, lateral mass flux

J, axial mass flux

k Boltzmann’s constant

l DA, characteristic thickness of particle layer

I, Dy/ltrl

P(nd) incomplete gamma function

R retention ratio

R* retention ratio in accessible core

R, retention ratio for flow FFF

R} retention ratio in accessible core for flow FFF

R, steric component of retention ratio

T absolute temperature

U field-induced lateral particle velocity

u° constant lateral velocity for flow FFF

V. volumetric crossflow

V. critical volumetric crossflow above which infinite retention is
observed

=

axial velocity of fluid
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v¥ adjusted axial velocity of fluid in accessible-core channel

oy average axial velocity of fluid

*) average axial velocity of fluid in accessible-core channel

w work required to transport a particle across channel width

w channel thickness or width

X distance from accumulation wall

x' lateral coordinate whose origin is radius a above accumulation
wall

z coordinate of flow

a alw

r function which corrects for drag on rigid sphere by infinite
planar wall

Y cosh™ x/a

) lower integration limit for Eq. (17)

€ equilibrium-departure term

S x'/1

& x'/ly

n viscosity

A kTAWA

A* A/(1 = 20)

A Lw

A A1 = 20)

U reduced velocity

v average zone velocity

v* average zone velocity in accessible-core channel

= ratio of steric to ideal nonequilibrium plate height

o) reduced equilibrium-departure term

X nonequilibrium coefficient

x* nonequilibrium coefficient for accessible-core channel

Y nonequilibrium coefficient

y* nonequilibrium coefficient for accessible-core channel

* correction to coefficient y* due to retarded diffusion at wall
(e ideal contribution to coefficient y*
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