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SEPARATION SCIENCE AND TECHNOLOGY, 20(9 & 10). pp. 699-724, 1985 

Influence of Wall-Retarded Transport on Retention and 
Plate Height in Field-Flow Fractionation 

JOE M. DAVIS and J. CALVIN GIDDINGS 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY. UTAH 841 12 

Abstract 

The retarded motion of spherical particles in the vicinity of an FFF channel 
wall is accounted for in theories for the flow FFF retention ratio and the 
generalized nonequilibrium plate height. These theories do not quantitatively 
explain select anomalies reported in the FFF literature. 

INTRODUCTION 

Field-flow fractionation is a family of methods especially advan- 
tageous for the separation and characterization of macromolecular and 
colloidal materials. In field-flow fractionation (FFF) each component of 
a mixture is localized near one wall or boundary of an unpacked channel 
by a force arising from an external field; components forming zones 
which are tightly compressed against the wall are carried down the 
channel by flow more slowly than are the components of less com- 
pressed zones, leading to separation. The mechanism of separation 
has been described more fully in other publications (1-3). 

The retention of components in FFF is dependent upon the transport 
rates of the constituent particles. Each particle is subject to two transport 
processes: one is a field-induced displacement which forces each particle 
toward the targeted wall (called the accumulation wall), and the other is a 
diffusive transport process which opposes the buildup of a particle layer 
at the wall. The steady-state thickness of the particle layer, and thus its 
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700 DAVIS AND GIDDINGS 

retention, is determined by the balance between these two transport 
processes. 

It is well known that the displacement of particles through a viscous 
medium is inhibited by the presence of other solid objects nearby. A 
simple case of this is the reduction of particle transport rate when the 
particle is spherical and is in the proximity of a planar wall. The 
theoretical details of this wall-retarded transport have been described by 
Brenner (4).  

Since sample particles in FFF are forced into a thin layer next to the 
accumulation wall, each particle will spend a portion of its time in very 
close proximity to the wall-that is, within a few particle diameters of the 
wall. In these time intervals, transport rates will be considerably reduced. 
The question naturally arises as to whether this wall-retarded transport 
will lead to any serious perturbations in FFF behavior. The present work 
has been done to determine the magnitude of the wall effect and 
consequently to provide an answer to the above question. 

In the parallel-plate channel configuration used in FFF, illustrated in 
Fig. 1, the applied field produces a constant or nearly constant force F on 
the individual particles comprising a component, inducing them to 
migrate toward the accumulation wall with lateral velocity U: 

U = Flf (1) 

wheref, the friction coefficient for the particle, is given by the Planck- 
Einstein equation as (5)  

f = k T / D  (2 )  

where D is the diffusion coefficient of the component particles, k is 
Boltzmann's constant, and T is absolute temperature. 

In  the absence of flow, a species composed of infinitesimally small 
particles forms the following equilibrium concentration profile c*(x) near 
the accumulation wall in response to F (6): 

c*(x) = c ( p '  ( 3 )  

where x is the distance from the acclimulation wall, co is the concentra- 
tion at x = 0, and I, the characteristic thickness of the profile, is 

1 = D/\d = ki / IF !  (4) 

where the second equality arises by virtue of Eqs. (1) and (2). 
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FIG. 1 .  (A) Schematic of parallel-plate FFF channel. (B) Edge view of channel illustrating 
coordinate systems. 

The flow profile in the FFF channel is closely approximated by the 
profile of velocity v between infinitely parallel plates: 

v = 6 ( v )  (t - (t)’) 
where (v) is the average linear velocity of the fluid and w is the width of 
the channel. 

With the help of Eqs. (3), (4), and (9, one can derive the following 
expression for the retention ratio R: 

R = v/(v) = 6h[c0th (?A)-’ - 
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702 DAVIS AND GlDDlNGS 

providing 1 is constant across the channel. Here v is the average 
downstream velocity of the component particles and h = Ilw. Using Eq. 
(4), we can also write h as h = kTI1Fh.v = kT/kd, where W is the work done 
by the constant force F in transporting a particle across the channel of 
width w. 

The dispersion of a zone is largely made up of nonequilibrium effects, 
described by nonequilibrium plate height H (7): 

where x = ~ ( h )  is a dimensionless nonequilibrium coefficient which 
approaches 24h3 as h approaches zero. 

It is usually assumed in the derivation of Eqs. (3), (6),  and (7) that 
transport parameters D and U are constant. We must reconcile this 
assumption with the knowledge that friction coefficient f increases as a 
particle approaches within a few equivalent radii of a solid boundary. 
Thus D and U, which vary inversely withfas shown by Eqs. (1) and (2), 
are not constant over the full width of the channel but decrease very near 
the walls. 

In this paper we account for this wall-retarded transport in the 
retention and nonequilibrium-plate-height theories of FFF. We wish to 
determine if reduced transport rates near the walls significantly perturb 
the equations given above. Since these equations are used to estimate 
physicochemical properties of resolved species, it is important to know if 
significant sources of error exist (6, 8-10). 

Since for most FFF subtechniques, both D and U are inversely 
proportional tof, the ratio 1 = ~ A u l  is independent offand the retention 
ratio R is thus unaffected by wall-retarded transport. However, for the 
subtechnique flow FFF, the retention ratio differs from the R expressed 
by Eq. (6) because Eq. (1) does not describe lateral velocity for this 
method. A corrected R is obtained later in this paper. 

The nonequilibrium plate height is a function of diffusion coefficient 
D, which varies inversely with$ Thus a departure from Eq. (7) is expected 
due to wall-retarded diffusion; its magnitude is also determined in a later 
section. 

WALL-RETARDED MASS TRANSPORT 

The friction coefficientf, Eq. (2), is commonly expressed by the Stokes 
equation (5) 
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FIELD-FLOW FRACTIONATION 703 

where q is the viscosity of the fluid and a is the radius of a spherical 
particle or the effective (Stokes) radius of a nonspherical particle. 
Equation (8) adequately describesf in bulk fluids but does not account 
for wall-retarded transport. To describe the latter, we write (4 )  

f = rfs (9) 

where r is a dimensionless term which depends on the shapes of the 
particle and the wall and the distance between them. The function r, 
which corrects for the frictional drag on a rigid sphere in the vicinity of 
an infinite plane, is (4 )  

n(n  + 1) 
X 

4 
3 

r =  -s inhy  ~ 

n = ,  (2n - 1)(2n + 3) 

2 sinh ( ( 2 n  + 1)y) + (2n + 1) sinh 2y X 
- 1 1 ,  y = c0sh-I- (10) 

4 sinh2((n + %)y) - ( 2 n  + 1)* sinh’y a 

where x is the distance of the sphere’s center from the plane. A plot of r 
versus xla is shown in Fig. 2; a cursory examination shows that r = 1 
except within a few radii of the plane. As the sphere approaches the plane 
tie., as x/a approaches I), r approaches infinity and mass-transport rates 
approach zero. Equation (10) has been verified experimentally (11). 

Also shown in Fig. 2 is a Flot of the following approximation to r: 

a 

The second term of the middle expression of Eq. (11) can be shown to 
equal the first-order expansion of Eq. (10) around xla = 1 (12). Figure 2 
shows that this simple function is a good approximation to r. 

We shall use r to account for the influence of wall-retarded transport 
on particle behavior in FFF. Such an analysis is rigorous only for 
spherical particles, but with this case we can gauge the general 
importance of the wall correction. 
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FIG. 2. Plot of I-. Eq. (10). versusxlu. Insert: Plot of r and approximation tor. Eq. ( I  1). versus 
x/a. 

Equation (1 1) can be written as 

a r ~ i + ~  
X 

where x’ = x - a is the distance relative to the plane at x = a,  as 
illustrated in Fig. l(B). 

For well-retained components, for which R << 1, we need to correct for 
reduced transport rates only at the accumulation wall. Near this wall, Eq. 
( I )  must be modified by  Eq. (9) to yield 
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FIELD-FLOW FRACTIONATION 705 

Similarly, Eq. (2) modified by Eq. (9) gives 

where Ds is the Stokes diffusion coefficient applicable to the bulk fluid. 

MODIFIED RETENTION THEORY FOR FLOW FFF 

Flow field-flow fractionation is a subtechnique of the FFF family in 
which components are carried toward the accumulation wall by a lateral 
flow of fluid through two semipermeable membranes which now 
constitute the channel walls; the lateral flow displacement replaces the 
external field (10, 13-15). For this method, the lateral velocity U of all 
particles in the channel is everywhere the same, equaling the transverse 
flow velocity. The particle diffusion is nevertheless assumed to be 
retarded in the usual way near the wall of accumulation. Since the ratio 
DIU of Eq. (4) now depends on f and thus on channel position, the 
retention ratio R, Eq. (6), is no longer rigorously correct for this 
subtechnique. 

We propose here a modified theory of reteotion for flow FFF in which 
the magnitude of the lateral velocity is the constant Iu"1 and in which the 
component's diffusion coefficient is given by Eq. (14). Although the 
function I' strictly corrects for a particle's decreased diffusivity near a 
solid plane and not near a semipermeable membrane, this approxima- 
tion is expected to be fairly good as long as the pore diameter of the 
membrane (typically about 0.02 pm) is much smaller than particle 
diameter, which is usually the case. 

The retention ratio R for a component subject to any form of FFF, 
including flow FFF, is given by 

where, as before, c* is the equilibrium concentration and v and (v) are the 
profile and average linear velocity of the fluid. The angled brackets 
indicate that the enclosed functions are averaged over the cross section of 
the channel. The profile of c* is obtained by equating the net lateral mass 
flux of the component to zero (16): 
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Using Eq. (14) for D, we get 

DAVIS AND GlDDlNGS 

(16) 

where I f  = Ds/lUol = -Ds/Uo in analogy with Eq. (4). Using Eq. (12) for r 
and integrating over the arbitrary x range from 6 to XI, we find 

u l i f  -(+&)/if 
c*=co(') e 

where cg is the value of c* atx' = 6. Equation (18) reduces to Eq. ( 3 )  in the 
limit a = 6 = 0, thus satisfying this consistency test. 

In terms of coordinate x', the profile of velocity v, Eq. ( 5 ) ,  is 

v = 6 ( ~ )  ((%I - (+)') = 6 ( v ) [  (1  - 2a) -- W 

+ 6 ( v ) ( a  - a*) (19) 

where a = a/w. Combining Eqs. (15), (18), and (19), we find 

R, 7 6(a - a') + 

J;( 1 - 2a) 1 -u / / ,  e-i'//{ dx 1 (20) 

where w( 1 - 2a) is the upper value of the x'-coordinate beyond which the 
spheres' centers cannot migrate (see Fig. 1B). The first term in Eq. (20) is 
the steric component of retention, originating from the transport of 
spheres which (almost) touch the wall; these are assumed to be carried at 
the velocity of the streamline coinciding with the spheres' centers. The 
second term, the ratio of integrals, describes the Brownian component of 
retention in the channel's accessible core, which is the fraction of the 
channel (shown between the dashed lines in Fig. 1B) through which the 
spheres' centers can move (17). This ratio of integrals is zero uliless 
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FIELD-FLOW FRACTIONATION 707 

0 < a  < I,; thus this simple theory for flow FFF predicts that only the 
steric component of retention exists if LI 2 l f .  FGr normal FFF, a < I,. 

Introducing the variables 

and 

h, y= ~ 

1 - 2 a  

where R, and R,* are, respectively, the steric and accessible-core contribu- 
tions to retention ratio R,. A similar breakdown of the retention ratio into 
a steric and a nonsteric'term was shown earlier (17 ) .  

Noting that the integral 

is the incomplete gamma function P(n,d), R7may be written as 

A?= 6hf (2.5) 

If we use the identity 

P ( n , d )  = -d"-le?'+ ( n  - 1 ) P ( n  - 1,d) 

Eq. (2.5) can be rewritten as 
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708 DAVIS AND GlDDlNGS 

As a approaches zero, R/* approaches R, Eq.(6), thus showing consistency 
in this limiting case. 

The evaluation of the incomplete gamma function P(l - a/Zf, I/+? in 
Eq. (27) requires either numerical methods or a power-series expansion 
and subsequent term-by-term integration. For the case in which a 
component is well retained (i.e., when A, z AT< l), the second term on the 
right-hand side of Eq. (27) is negligible and RTis approximately 

R,*z66h, 1 - -  ( I  - 2 a ) -  4, 2 - -  , O < a  < l f  (28) ( ;I[ ( 31 
The approximate retention ratio R, for flow FFF which accounts for wall- 
retarded transport requires that R,, be added to this Rf, as shown by Eq. 
(23): 

A more exact expression for R, is obtained by adding R,T to the R/* of Eq. 
(27). 

MODIFIED THEORY FOR NONEQUILIBRIUM PLATE HEIGHT 

General equations from which the nonequilibrium plate height can be 
evaluated for species composed of particles of arbitrary shape were 
derived by Gajdos and Brenner (18). In their work the authors noted that 
a component’s diffusion coefficient decreases near the channel wall but 
did not account for this decrease in their theory. We develop here an 
equation for the nonequilibrium plate height H of a monodisperse 
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FIELD-FLOW FRACTIONATION 709 

sample composed of spherical particles using the function r, the 
equation of continuity for mass transport, and the nonequilibrium theory 
of FFF, as developed by Giddings (7) .  The equation of continuity for 
mass transport in the channel is ( 7 )  

or 

where t is time, c = c(x’,z,t) is the component’s concentration profile, J I  is 
the lateral mass flux, J, is the axial mass flux along coordinate z ,  and Dz 
is the diffusion coefficient of the species, which is assumed to be constant, 
relative to flow coordinate z .  

Nonequilibrium theory is used to calculate H from Eq. (31) as follows. 
Under quasiequilibrium conditions, profile c does not vary with time 
along the x’-coordinate, and dcldr can be approximated as ( 7 )  

where v is the average zone velocity. Using Eq. (32) and the expansion 

c = c*(l + E) (33) 

where E(x’,z) is the equilibrium-departure term and measures the 
fractional departure of c from c* due to flow (7) ,  an ordinary differential 
equation in E is developed from Eq. (31). It can be further shown that E is 
related to H = 2 9 /v by the effective Fickian diffusion coefficient 9 
measuring flow dispersion (7) 

where the angular parentheses indicate cross-sectional averages. (All 
solutions for E are proportional to t3 In c*/dz, so 9 is independent of the 
indicated concentration gradient (3.) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



71 0 DAVIS AND GlDDlNGS 

We now derive the differential equation in E accounting for wall- 
retarded transport in the channel. Noting that the field-induced velocity 
U can be written, via Eqs. (3) and (4), as U = -D/l for most FFF 
subtechniques except flow (which is not considered here), the first term 
on the right-hand side of Eq. (31) becomes 

(35) - v . J  ' -  - -  d D ( c  - + -  ;;'I + D -  :'(: -+-  ;;'I 
dx'  1 

We may write the partial differential dDldx' as dDldx' since r and thus D 
are functions only of x'. Equations (31), (32), (33), and (35) can be 
combined to give 

D , - - v - = -  dc* d D ( c *  -+-+-+- C ; E  ;z r 3 ~ ~ l e )  a v  
az2 az dx' I 

I ax' ax' I 
ac* 

azz aZ +D,-- v- 

where only the indicated terms are kept from the expansion because the 
zone's axial dimensions are much greater than its lateral dimensions; in 
other words, because a(c*e)laz << d(c*E)ldx' (7).  We may consequently 
write aE/ax' as the ordinary derivative, deldx'. 

Equation (36) may be greatly simplified by using the expression 

c* 
ax' ax ax! I 

- - -  ac* - ac* ax 
(37) 

where ac*/dx' is calculated using Eq. (3) and the identity x = x' + a. 

terms, and regrouping reduces Eq. (36) to 
The substitution of Eq. (37) into Eq. (36), the cancellation of common 

d E  ac* d2e dc* d D  de  (v - v) ~ = __ __ 
d z  dx'  dx' d x  dx dx" 

C* + D 77 + D -c*  (38) 
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FIELD-FLOW FRACTIONATION 71 1 

The derivative of D is, using Eq. (14). 

dD d r l d x ’  
dx’ 
-- - - D , r ,  (39) 

Substitution of Eqs. (37) and (39) simplifies Eq. (38) to the desired 
differential equation in the equilibrium-departure term E :  

(40) 
d2E d l n r  ( v - v ) = - -  ~ 

d l n c *  r ( dx’ + i) $ ___- 
az D, dx” 

If r is equated to 1, Eq. (40) reduces to Eq. (20) in Ref. 7, which is the 
differential equation in E for a zone having a constant lateral diffusion 
coefficient. 

Equation (40) may be written in dimensionless form using the reduced 
variables (7) 

and 

p = VIV (43) 

We then get 

where T(x’la) is transformed to r(<). 
Because the spheres’ centers cannot migrate beyond the accessible-core 

boundaries, it is convenient to calculate first from this differential 
equation a nonequilibrium plate height H* for the accessible-core 
channel (using the approach described above) and then to calculate the 
measurable nonequilibrium plate height H from H*. Using a formalism 
previously developed for this purpose (27), the constant 6(v)(a - a’) is 
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712 DAVIS AND GlDDlNGS 

subtracted from v, Eq. (19), so that the profile equals zero at the 
accessible-core boundaries. Parameter H* can then be shown to equal 
(1 7) 

where 

v* = R*(v*) (46) 

(47) 

and 

W* -~(C*@P)/(C*) = -2(c*(@ - gJ(p - l))/(~*) (50) 

where g, is a constant. The function v*, Eq. (47), is the adjusted velocity 
profile which equals zero at the accessible-core boundaries. The acces- 
sible-core parameters v*, (v*), and R* based on this adjusted profile are 
the average zone velocity, the average linear velocity of the fluid, and the 
retention ratio, respectively. Parameter R* is defined by Eq. (6) using A*, 
Eq. (49), instead of h. 

The function @ is obtained by solving Eq. (44) using two constraints to 
determine a unique solution. The first constraint is that the average 
departure due to flow of c from c* is zero ( 7 ) :  

(It is by virtue of this condition that the second identity in Eq. 50 is 
derived.) 'The other constraint is that the spheres' centers cannot cross the 
accessible-core boundaries. Following the method of Giddings, we find 
(7 )  
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FIELD-FLOW FRACTIONATION 713 

The function exp (-<)/r is an integrating factor for Eq. (44); hence 

Integrating both sides, we obtain 

where r’ is a dummy variable of integration and Z(0) = 0 in light of Eq. 
(52). Integrating Z, we find 

where z’ is another dummy variable and g,  = Q(0). 

can combine these two equations with Eq. (3) to obtain 
Letting the constant g2 in Eq. (50) equal the constant g ,  in Eq. ( 5 3 ,  we 

The integral in the numerator of Eq. (56) can be simplified via 
integration by parts, as shown in Ref. 19. Coefficient w* thus reduces 
to 

The reduced velocity p = v*/v* in the accessible core can be shown, 
using Eqs. (46) and (47), to equal (19) 

6 
R P=; 

Combining Eqs. (57) and (58) 
find 

( 5 8 )  

and partially evaluating the inwgral, we 
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71 4 DAVIS AND GlDDlNGS 

The complexity of the function r, Eq. (lo), precludes further analytical 
evaluation of Eq. (59). We can derive an analytical approximation to w* 
using the approximation to r, Eq. (12), which in terms of 5 is 

a r = t + -  K 
Combining Eqs. (59) and (60), we obtain an approximation to w* which 
can be expressed as 

where w: is the nonequilibrium coefficient for an ideal (hypothetical) 
zone having a constant lateral diffusion coefficient and w:is a correction 
for the restricted motion of zone members near the channel wall. The 
relationship for wz given by Eq. (25) of Ref. 19, is a complex function of h* 
which approaches the limit four as h* approaches zero. Coefficient $can 
be shown to equal 

648h*4 - 288h*3 + 36h*2 
2aIl 

R**(1 - exp (-A*-')) wr = 

X 
72h* 

1 - exp(h*-') 
- (360h*3 + 648h*4) exp (--A*-') + 

X 
288 

(1 - exp (A*-'))' (6A*'(exp(-h*-') - 1) + 6h* - 1) + 

1 2 @* - ' I z n  
n = l  ( 2 ~ ) ( 2 ~ ) !  
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FIELD-FLOW FRACTIONATION 71 5 

Of the six terms in the brackets of Eq. (62), only the first three 
contribute significantly to the value of YTwhen R* << 1. As h* approaches 
zero, Eq. (62) approaches 2a/l; thus the limit of Eq. (61) for this case is 

a 
~ * = 4 + 2 -  

1 
lim h*+O 

As h* and zone thickness I approach zero, Eq. (63) becomes unbounded. 
Parameter H* is nevertheless bounded (and approaches zero) because it 
is proportional to the product ~ * 1 ’ ,  as shown by Eq. (45). 

The function which relates H* to H is (17) 

R * ( l  - 2a)’ H = H* 
6(a - a’) + R*(1 - 20,)’ 

Combining Eqs. (45) and (64), we find that 

X*R*(l - ~ c ~ ) ~ w ’ ( v )  
Ds[6(a - a’) + R*(l - 2a)*] 

H =  

where x*, Eq. (48), is defined by Eqs. (6), (49), and (59) or (61)-(63). 

RESULTS AND DISCUSSION 

Figure 3 is a plot of the Brownian (normal or nonsteric) component Rf 
of retention ratio R, for flow FFF versus 4, for selected values of d,. The 
solid curves were calculated from the rigorous relationship, Eq. (27), with 
numerical integration of the integral P(l - a/lf,l/hD. The broken curves 
below the solid ones were calculated from approximate Eq. (28), whereas 
the broken lines above the solid curves were evaluated from the terms in 
this expression which are linear in S. Some approximations are not 
shown because they essentially superimpose on the solid curves. The 
agreement between Eqs. (27) and (28) is generally good, especially when 
the quadratic term in A, is retained in Eq. (28). 

The importance of this modified retention theory for flow FFF is 
difficult to evaluate. A literature survey reveals that the experimental 
retention ratios of proteins, polystyrene latices, and viruses in flow FFF 
systems are in close agreement with the predictions of R ,  Eq. (6), when 
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FIG. 3. Plot of RJf(for flow FFF) versus S for several values of a/$ 

lateral velocity lUOl is relatively small (10, 13, 15). As observed earlier, 
however, the retention ratios predicted by Eqs. (6) and (23) are very 
similar when allf< 1 and a << 1. 

Using experimental results and physicochemical data characterizing 
species composed of spherical (or almost spherical) particles, we can 
estimate albratios and determine if a significant departure from Eq. (6) is 
expected. This ratio can be written, using Eqs. (2) and (8), as (10) 

(66) 
a - - alU"I - alUolfs - 6nqazwfc  
If Ds kT kTV,, 
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FIELD-FLOW FRACTIONATION 71 7 

where Vo is the column void volume and kc is the volumetric crossflow, 
the volume of fluid passing through the semipermeable membranes 
forming the channel walls per unit time. For all but one case, the 
calculated all, ratios are < 0.12 (and usually << 0.12). The expected upper 
percentage error between R and R, is thus roughly lo%, which is also the 
average percentage error between Eq. (6) and the experimental retention 
ratios (10). Random sources of error could, however, account for this 
small relative variation. The exception, a polystyrene latex for which a/  
I,  = 0.19 (a = 2.4 X lo-' m, w = 3.8 X m3, V,  =: 
3.6 X lo-') m'/s, q = 0.001 kg/m s, A, = 3.33 X and 
T = 300 K), is associated with an experimental retention ratio equal to 
0.020 (ZO), which is also the retention ratio predicted by both Eqs. (6) and 
(29). (Although R,* is less than R ,  Eq. 6, the flow FFF retention ratio Rf is 
calculated by adding R ,  to RT; for this case, R = R,.) Thus none of these 
results unambiguously establishes the role played by wall-retarded 
diffusion in the retention tnechanism of flow FFF. 

Secondly, it has been observed experimentally that some species, e.g., 
viruses, are infinitely retained in flow FFF systems when lateral velocity 
IUoI exceeds a critical value (13), but complete or partial elution is often 
observed when IU"I is reduced. The transition is rather sudden. Two 
possible explanations of this phenomenon are the adsorption of particles 
on the membrane forming the channel wall and the trapping of particles 
in microscopic basins of the membrane which are well removed from the 
axial flowstreams (13). Either mechanism could conceivably result in 
near-infinite retention if particles comprising a zone are very near the 
membrane, which will be the case when the steric component R ,  of 
retention is the dominant term of retention ratio Rr. Equation (23) 
predicts that only R ,  is finite if allr>, 1; it is therefore instructive to 
determine if the critical value of lUol is obtained when all, = 1. 

The corresponding critical volumetric crossflow f,, is calculated from 
Eq. (66) by equating a/lf to unity: 

m, Vo = 1.85 X 
a = 6.33 X 

The question mark indicates that Eq. (67) is the expected relationship if 
the above condition holds. The QP virus and similar bacteriophages were 
reported to adsorb to a cellulose-acetate membrane at the crossflow 
f(, =: 1.33 X m3/s (13). Using this value for V,, and the values cited 
above for V,, w, q, and T,  the Stokes radius of the QP virus calculated from 
Eq. (67) is 0.284 pm, which is 20.6 times larger than the radius calculated 
from Eqs. (2) and (8) and the reported Stokes diffusion coefficient of the 
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- 

- 

- 

- 

- 

QP virus, 1.61 X lo-'' m'ls (13). Since the all, ratio depends on the square 
of particle radius (see Eq. 66), the actual a/lf ratio is not unity but 
(20.6)-' = 2.36 X suggesting that little correlation exists between the 
limit al2, = 1 and the phenomenon of infinite retention. More likely, an 
interaction of species with the membrane must be considered to 
understand this anomaly. 

Finally, the apparent decrease in the diffusion coefficient of the QP 
virus with increasing crossflow (13) cannot be accounted for by the 
modified retention theory. For species ccmposed of infinitesimally small 
particles, h is (10) 

225 
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FIG. 4. Plot of y ~ *  versus a/[  for typical values of h*. 
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FIELD-FLOW FRACTIONATION 71 9 

and thus the product Ape is constant and proportional to diffusion 
coefficient Ds, One could propose the following argument to explain the 
reported decrease in DS. Equation (23) predicts that the expected 
retention ratio for flow FFF is smaller than predicted by Eq. (6) 
(assuming R,*>R,). Using Eq. (6j, erroneously small A's are thus 
calculated from experimental retention ratios, the relative.errors in which 
increase with increasing crossflow. Thus the product Vch can remain 
constant only if diffusion coefficient Ds decreases. 

Quantitative calculations do not, however, support this argument. In 
the channel having the cellulose-acetate membrane, the diffusion 
coefficient of the QP virus was reported to decrease when p, 2 2 X 
m3/s (23). Based on this value and the Stokes radius of the virus, the ratio 
all, = 3.5 X is calculated using Eq. (66). Wall-retarded diffusion thus 
does not account for this phenomenon. 

Figure 4 is a plot of the nonequilibrium-plate-height coefficient w* 
versus all for several values of h*. The solid curves were obtained from 
numerical integration of Eq. (59); the broken curves were evaluated from 
Eqs. (61) and (62). The limiting curve forty* = 0 was calculated from Eq. 
(63). The agreement between the numerical and analytical results is 
good. 

Figure 5 is a plot of E, the ratio of the nonequilibrium plate height 
corrected for steric effects (Eq. 64) to the ideal nonequilibrium plate 
height (Eq. 7j, versus all for typical values of h. The solid curves (unlike 
the broken ones) are also corrected for wall-retarded transport. Clearly, 
the predicted values of H are greater if one accounts for this effect. 

It is premature to evaluate the full significance of this work because, as 
noted elsewhere (27), the importance of size effects on dispersion by f ow 
has received little experimental study. In general, the agreement betw:en 
experimental and theoretical nonequilibrium plate heights is not as good 
as the agreement between experimental and theoretical retention ratios, 
but this trend is also found in chromatography (20). 

A brief summary of the discrepancies between experimental and 
theoretical ITS for various FFF subtechniques is helpful in evaluating the 
importance of wall-retarded transport on nonequilibrium-plate-height 
theory. In studies of moderately retained (R < 0.27) polystyrene polymers 
via thermal FFF, excellent agreement between theoretical and experi- 
mental x coefficients was obtained for one series of experiments in two 
channels (24, whereas the percentage error between these coefficients 
varied from -74.9 to 34.3% for another series of experiments in five 
channels (22). For sedimentation FFF, it was found that plots of H versus 
( Y )  derived from polystyrene latices (9) and the T2 virus (23) yielded 
slopes (which, as shown by Eqs. 7,48, and 65. are proportional to w and 
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FIG. 5. Plot of dimensionless plate-height ratio, E, versus nll for typical values of h. 

a < 0.1. 

v*) differing on the average from theory by -4296, most likely due to 
particle interactions. However, similar studies using polystyrene latices 
and a different sedimentation system yielded slopes which inexplicably 
differed from theory by 40-5096 (24). In a prototypical electrical FFF 
system with channel walls formed from flexible membranes, the experi- 
mental nonequilibrium plate height of hemoglobin was approximately 
twice the theoretical prediction (25), whereas very good agreement 
between experiment and theory was obtained with the enzyme lysozyme 
(but not with hemoglobin) in an  electrical system with rigid walls (26). 

The discrepancies between experiment and theory summarized above 
probably have more than one origin, including system-to-system varia- 
tion. None of these aberrations, however, is likely attributable to wall- 
retarded transport. A literature survey reveals that the largest all ratio 
associated with nonequilibrium-plate-height data is 0.38, as determined 
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from the retention of 0.945-pm-diameter polystyrene latex via sedimenta- 
tion FFF (w = 1.27 X m and the retention ratio is 0.08) (24). From 
Eqs. (61), (62), and (65), one anticipates only an  18% variation between the 
wall-corrected and the ideal nonequilibrium plate heights; furthermore, 
the theoretical slopes C of the H-versus-(v} plots for the wall-corrected 
(C = 0.61 s) and the ideal (C = 0.72 s) nonequilibrium plate heights are 
both considerably smaller than the experimental slope (C = 1.78 s). This 
large discrepancy is unlikely due to wall-retarded diffusion. 

Most of the experimental studies of plate height summarized above 
were conducted in the Brownian regime of FFF, for which 1 >a .  
Equation (62) predicts that the corrections to tq* and plate height H are 
most important in the steric regime of FFF, for which 1 <a.  The 
experimental data for this regime are unfortunately limited and con- 
flicting (27-29). In accordance with nonequilibrium theory, H was found 
to increase with increasing linear velocity (v} for species composed of 
silica (27) and polystyrene latex (28) but was found to decrease with 
increasing (v} for a sample composed of red blood cells (29). 

Furthermore, since for a given field strength radius a almost always is 
greater for smaller I values (XI), the a ratios of species readily fractionated 
via steric FFF are frequently large (i.e., a > 0.01). Under these conditions 
the viscous fluid exerts a nonnegligible lift force on the particles which 
depends on both a and (v} and is opposite to lateral force F, inducing 
migration'away from the wall (28, 29, 31,32). Consequently, Eq. (3), which 
is independent of a and (v}, is often not correct for the steric mode of 
FFF, lessening the rigor of coefficient w*, Eq. (59). Until further 
experimental and theoretical characterization of nonequilibrium plate 
heights in the steric mode of FFF is undertaken, the utility of the wall- 
corrected equations derived here remains open. 

CONCLUSION 

The modified retention theory for flow FFF does not explain quantita- 
tively the infinite retention of a component above a critical crossflow or 
the apparent decrease in its diffusivity with increasing crossflow. 
However, the importance of correcting the retention ratio for wall- 
retarded transport cannot be unambiguously evaluated from published 
data since usually a/lf Q 0.1 and the relative errors among R, R,, and the 
experimental retention ratios are all small. 

The modified theory for nonequilibrium plate height does not 
realistically account for several anomalies when components are subject 
to normal (Brownian) FFF. The influence of wall-retarded diffusion on 
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the nonequilibrium plate heights of components subject to steric FFF 
cannot be presently evaluated due to insufficient experimental data and 
an incomplete characterization of the component’s concentration pro- 
file. 

SYMBOLS 

a 

C 

C* 

co 

D 
9 
Ds 
0, 
F 
f 
fs 
H 

V 

radius of spherical particle or Stokes radius of nonspherical 
particle 
concentration 
equilibrium concentration 
concentration at accumulation wall (x = 0) or the plane 
x’ = 6 
diffusion coefficient 
effective diffusion coefficient describing flow dispersion 
Stokes diffusion coefficient 
diffusion coefficient relative to coordinate z 
lateral force on particle subject to FFF 
friction coefficient of particle 
Stokes friction coefficient 
nonequilibrium plate height 
nonequilibrium plate height in accessible core 
lateral mass flux 
axial mass flux 
Boltzmann’s constant 
DAd, characteristic thickness of particle layer 
DshYI 
incomplete gamma function 
retention ratio 
retention ratio in accessible core 
retention ratio for flow FFF 
retention ratio in accessible core for flow FFF 
steric component of retention ratio 
absolute temperature 
field-induced lateral particle velocity 
constant lateral velocity for flow FFF 
volumetric crossflow 
critical volumetric crossflow above which infinite retention is 
observed 
axial velocity of fluid 
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V* 

0)) 
(v*> 
W 
W 
X 
X' 

Z 

a 
r 

Y 
s 
& 

5 
5/ 
tl 
h 
A* 
% 
%* 
P 

V* 

4) 
X 
x* 
w 
w* 
wT 
w:' 

V 

- - L 

adjusted axial velocity of fluid in accessible-core channel 
average axial velocity of fluid 
average axial velocity of fluid in accessible-core channel 
work required to transport a particle across channel width 
channel thickness or width 
distance from accumulation wall 
lateral coordinate whose origin is radius a above accumulation 
wall 
coordinate of flow 
alw 
function which corrects for drag on rigid sphere by infinite 
planar wall 
cosh-' xla 
lower integration limit for Eq. (17) 
equilibrium-departure term 
x'll 
X ' l l f  
viscosity 
k T h d  
$41 - 2a) 
4fw 
Afl(1 - 2 4  
reduced velocity 
average zone velocity 
average zone velocity in accessible-core channel 
ratio of steric to ideal nonequilibrium plate height 
reduced equilibrium-departure term 
nonequilibrium coefficient 
nonequilibrium coefficient for accessible-core channel 
nonequilibriurn coefficient 
nonequilibrium coefficient for accessible-core channel 
correction to coefficient w* due to retarded diffusion at wall 
ideal contribution to coefficient w* 
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